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A B S T R A C T

Survival data is being analysed here under the middle censoring scheme, using specifically quantile function
modelling under competing risks. The use of middle censoring scheme has been shown to be very appropriate
under the COVID-19 pandemic scenario. Cause-specific quantile inference under middle censoring is employed.
Such quantile inferences are obtained through cumulative incidence function based on cause-specific propor-
tional hazards model. The baseline lifetime is assumed to follow a very general parametric model namely the
Weibull distribution, and is independent of the censoring mechanism. We obtain estimates of the unknown
parameters and cause specific quantile functions under classical as well as a Bayesian set-up. A Monte Carlo
simulation study assesses the relative performance of the different estimators. Finally, a real life data analysis
is given for illustration of the proposed methods.
. Introduction

After the Coronavirus Infectious Disease (COVID-19) first appeared
n Wuhan, China in December 2019, the World Health Organization
WHO) declared it a global pandemic on March 11, 2020 due to its
lobal spread [1]. COVID-19 is transmitted mainly during coughing
nd sneezing; fecal-oral transmission is also reported in a few cases.
ccording to the worldometer website (https://www.worldometers.

nfo/coronavirus/), as of 10 June 2021, there were more than 175
illion cases and around 3.78 million deaths globally. COVID-19 has
ow been reported on every continent. The first case of COVID-19 in
ndia is reported in the state of Kerala on 30 January 2020, after a
edical student returned back from China. COVID-19 has occurred at

n unprecedented period, and the lockdown measures enacted have
nfluenced human life with serious economic and social development
oncerns. In comparison to high-income nations, low- and middle-
ncome nations with less developed health systems appear to have
reater obstacles and remain vulnerable in regulating and controlling
OVID-19 [2].

The COVID-19 outbreak has changed the health system’s respon-
ibilities, and it now finds itself not only overloaded, but also with
imited capacity to provide services that it had previously extended to
ommunities. COVID-19 patients are clogging up hospitals and health
acilities, making it difficult for other symptomatic patients with acute
r chronic illnesses to receive standard care [3]. When the entire health
ystem is focused on fighting against the COVID-19 pandemic, medical
clinical trials) and surgical emergencies (including road accidents) are
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neglected. COVID-19’s disruption of health services is especially prob-
lematic for people with noncommunicable diseases (NCDs) who require
regular care [4]. NCDs includes mostly cardiovascular diseases, cancers,
diabetes and chronic respiratory diseases. NCDs are responsible for over
70% of all deaths, with nearly 80% of these deaths occurring in low and
middle-income countries. In addition, NCDs constitute approximately
80% of all years lived with disability globally [4].

Aside from the aforementioned effects of COVID-19 on the health-
care system, elective care cancellations and lack of transportation due
to imposed lock-downs, insufficient staff, and hospital closures are
the most common causes of health care service disruptions. In this
scenario, medical professionals require more precise information about
the patients’ follow-up. However, in the current COVID-19 pandemic
situation, follow-up data consists of a set of exact event times as well
as interval event times, and it is important to include such exact and
interval event times in any analysis to obtain an accurate estimate
of the patients’ survival after surgery. This is exactly the context and
type of data where the idea of ‘‘middle-censoring scheme" [5] is most
appropriate and which we investigate.

Censoring is a key feature of survival analysis in statistics, and it is
commonly used when the exact lifetimes of individuals are not known
except for a few in the study. Jammalamadaka and Mangalam [5]
introduced a modern concept of censoring scheme known as middle
censoring, which has received considerable attention in the statistical
literature. In this censoring scheme the exact lifetimes of some in-
dividuals are observed while for others, it becomes unobservable as
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they fall in some random censoring intervals. This censoring scheme
arises prominently in time to event analysis in clinical trial studies.
Moreover, middle censoring also occurs when the mechanism where the
observations are being taken, is closed for a period, due to an external
emergency such as the outbreak of disease, war or a strike.

In the current scenario of COVID-19 pandemic, the need for the
use and application of middle censoring scheme is highly relevant. For
example, in a breast cancer clinical trial centre, patients are registered
with node-negative breast cancer. Some of the patients may receive the
tamoxifen-alone arm and remaining patients received the combination
of radiation and tamoxifen arm. Investigators may be interested to
observe events such as local relapse, auxiliary relapse, remote relapse,
second malignancy of any kind, and death. After the surgery patients
are discharged and they are instructed that they have to come to
the hospital for routine check-up and follow-up. But in the pandemic
situation, many countries declared a nationwide complete lock-down so
that many patients fail to get routine check-ups, and the investigators
may also lose the follow-up on these patients. In the interim, some of
the patients may experience an event of interest. In this situation the
exact time of the event occurrence cannot be observed for some patients
except for noting the interval for the event-time, and learning on later
inspection that the actual event has occurred during this interval. Thus,
middle censoring is highly relevant with immediate application in real
life.

To define middle censoring, let 𝑇1, 𝑇2,… , 𝑇𝑛 and [𝑈1, 𝑉1], [𝑈2, 𝑉2],
, [𝑈𝑛, 𝑉𝑛] be the lifetimes and random censoring intervals respectively

f the 𝑛 individuals who are under observation. Intervals [𝑈𝑖, 𝑉𝑖], 𝑖 =
1, 2,… , 𝑛 are independent and identically distributed (i.i.d.) with some
unknown bivariate distribution 𝐺(⋅, ⋅) and they are independent of
𝑇𝑖. Under the notion of the middle censoring, lifetime 𝑇 becomes
observable if 𝑇 ∉ [𝑈, 𝑉 ] with Pr(𝑈 < 𝑉 ) = 1, otherwise unobservable.
Middle censored competing risks data with exponential distribution
was studied by Ahmadi et al. [6] and Abuzaid et al. [7]. See also the
references cited therein.

A single long-term survivor may have a major impact on mean life in
survival study, particularly in the case of heavy tailed models, which
are widely used for lifetime data. This type of situation is commonly
encountered when the subjects can experience 𝑝 types of mutually
exclusive competing risks of death/event. For example, in a cancer
clinical trial, the primary risk of concern may be a full or partial
reaction to therapy, with death as a competing risk, and death may
be attributed due to various risks such as cardiac arrest, corona virus
infection etc. Similarly, in liver transplantation an individual can expe-
rience one of the three possible outcomes such as death, transplantation
and withdrawal from the waiting list.

In modelling of survival data with competing risks, two basic quan-
tities such as cumulative incidence function (CIF) and cause specific
hazard function (CSHF) get considerable attention in the statistical
literature, see Kalbfleisch and Prentice [8]. The CIF represents the
cumulative probability of failure due to cause 𝑗 up to a certain time
point 𝑡, conditional on 𝑚 × 1 vector of covariates 𝒙 ∈ R𝑚, which is
described as follows

𝐹𝑗 (𝑡;𝒙) = Pr(𝑇 ≤ 𝑡, 𝐶 = 𝑗 ∣ 𝒙), 𝑗 = 1, 2,… , 𝑝, (1)

where 𝑇 is the time to failure, 𝐶 = 𝑗, 𝑗 ∈ {1, 2,… , 𝑝} is the cause
of failure. The CSHF simply gives the instantaneous failure rate from
the cause 𝑗 at time 𝑡 among the individuals who survives up to 𝑡.
Mathematically, CSHF is defined as

𝜆𝑗 (𝑡;𝒙) = lim
𝛥𝑡→0

𝑃𝑟(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡, 𝐶 = 𝑗 ∣ 𝑇 ⩾ 𝑡,𝒙)
𝛥𝑡

, 𝑗 = 1, 2,… , 𝑝. (2)

Although, in general the distribution function 𝐹 (𝑡) reaches 1 as 𝑡 → ∞,
in the presence of competing risks, the asymptote of the CIF is less than
1, implying that the proportion of the 𝐹𝑗 (𝑡;𝒙) due to cause 𝑗 increases
up to some time point, and then plateaus. Therefore, obtaining the
mean survival time does not make much sense because it will always
be infinite. Hence, in such a situation, quantile-based estimates, which
2

are finite and may be identifiable from observed data are generally
found to be more precise and robust. These measures can be used for
summarizing a CIF curve.

A good discussion of the various theoretical aspects of the quantile
function may be found in [9]. Let 𝐹 (𝑡) be a right-continuous distribution
function of a random variable 𝑇 . The quantile function of 𝑇 , say 𝑄(𝑞)
is defined by

𝑄(𝑞) = 𝐹−1(𝑞) = inf{𝑡 ∶ 𝐹 (𝑡) ≥ 𝑞}, 0 ≤ 𝑞 ≤ 1. (3)

The quantile function has a number of unique features that a distribu-
tion function does not have. For example, the sum of the quantiles,
product of the positive quantiles, and the monotonic transformation
of the quantile functions are also quantile functions. These properties
make the quantile function a preferred alternative to the distribution
function in statistical modelling. The quantile function is gaining pop-
ularity as a comprehensive tool for statistical analysis of lifetime data.
Quantiles are frequently used in medical research to summarize the
survival function. For example, the median survival time has long been
used to assess the survival curve. In survival studies, quantile regression
has gained increasing interest as a viable alternative to methods using
distribution functions. For more details on quantile function one may
refer to Sankaran et al. [10] and the references therein.

Modelling of competing risks survival data using the quantile func-
tion has been studied by several researchers. Peng and Fine [11,12]
discuss non-parametric and regression model approach of quantile func-
tion with competing risks. Sankaran et al. [10] propose a quantile based
test for comparing the equality of CIFs. Lee and Fine [13] considered
parametric and non-parametric inferences for cumulative incidence
quantiles without covariates. Lee and Han [14] proposed covariate ad-
justed quantiles inferences through cause specific proportional hazards
(PH) model of the CIF. Lee [15] considered the parametric modelling of
the cause specific quantiles with covariates through Weibull PH model
and direct semi-parametric improper Gompertz model. Recently, Peng
[16] has reviewed various aspects of quantile regression analysis of
survival data with competing risks and without competing risks un-
der randomly censored and left truncation mechanism based on the
semiparametric approach.

The primary goal of this paper is to obtain quantile based inference
for middle censored competing risks survival data based on the para-
metric regression modelling of CIF. We define the CIF through Weibull
PH model. Under this set-up, we obtain both maximum likelihood
and Bayes estimates under reasonable priors. The Bayes estimates are
obtained using two different loss functions, namely the squared error
loss function and LINEX loss function. As one may expect, explicit
form of the posterior densities turn out to be intricate, and so we
adopt the Markov Chain Mote Carlo (MCMC) simulation algorithms for
generating the posterior samples.

The rest of the article is organized as follows. In Section 2 we define
the parametric cause-specific quantile functions based on Weibull PH
model. In Section 3 we obtain the maximum likelihood estimates under
middle censoring scheme for cause specific quantile functions. Bayes
estimates based on squared error and LINEX loss functions are provided
in Section 4. Section 5 presents a Monte Carlo simulation study to
compare the relative performance of the proposed methods. A real data
application of the proposed approach is given in Section 6. Finally
Section 7 concludes with some remarks.

2. Parametric cause specific quantile functions

Regression models in survival studies may be developed via Cox’s
Proportional Hazards (PH) [17] model, in which the effect of the
covariates is multiplicative on some baseline hazard function. For
parametric regression modelling of survival time one could use some

well known distribution for the baseline function. More details can be
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found in [18] and references therein. The CSHF in terms of the well
known Cox’s PH model turns out to be of the following form:

𝜆𝑗 (𝑡;𝒙) = 𝜆0𝑗 (𝑡)𝑒
𝜷⊤𝑗 𝒙, (4)

where 𝜆0𝑗 (𝑡) is the baseline CSHF and 𝜷⊤
𝑗 ∈ R𝑚 is the 1 × 𝑚 vector of

regression coefficients of cause 𝑗. The CIF can be formulated in terms
of all the CSHFs as follows

𝐹𝑗 (𝑡;𝒙) = ∫

𝑡

0
𝜆𝑗 (𝑠;𝒙)𝑆(𝑠;𝒙)𝑑𝑠. (5)

The overall survival function 𝑆(𝑡;𝒙) is obtained in terms of cu-
mulative CSHFs as 𝑆(𝑡;𝒙) = exp{−

∑𝑝
𝑗=1 𝛬𝑗 (𝑡;𝒙)}, where 𝛬𝑗 (𝑡;𝒙) =

∫ 𝑡
0 𝜆𝑗 (𝑠;𝒙)𝑑𝑠. In this article, we consider 𝜆0𝑗 (𝑡) is corresponding to a

Weibull distribution i.e. 𝜆0𝑗 (𝑡; 𝛼𝑗 , 𝜃𝑗 ) = 𝛼𝑗𝜃𝑗 (𝜃𝑗 𝑡)
𝛼𝑗−1. The CIF under the

cause specific PH assumption (4) is then given by

𝐹𝑗 (𝑡;𝜣,𝒙) = ∫

𝑡

0
𝛼𝑗𝜃𝑗 (𝜃𝑗𝑠)

𝛼𝑗−1𝑒𝜷
⊤
𝑗 𝒙exp

{

−
𝑝
∑

𝑗=1

(

𝜃𝑗𝑠
)𝛼𝑗 𝑒𝜷

⊤
𝑗 𝒙
}

𝑑𝑠, (6)

where 𝜣 = (𝜣1,𝜣2,… ,𝜣𝑝) is the vector of parameters and 𝜣𝑗 =
(𝛼𝑗 , 𝜃𝑗 , 𝜷𝑗 ). From (6) it can be seen that the closed form expression for
𝐹𝑗 (𝑡;𝜣,𝒙) exists if the shape parameter 𝛼𝑗 is common for all causes
i.e. 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑗 = 𝛼. Under this assumption, it takes the form

𝐹𝑗 (𝑡;𝜣,𝒙) =
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙

∑𝑝
𝑗=1 𝜃

𝛼
𝑗 𝑒

𝜷⊤𝑗 𝒙

[

1 − exp
{

−

( 𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙
)

𝑡𝛼
}]

. (7)

he corresponding cause specific probability density function 𝑓𝑗 (𝑡;𝜣,𝒙)
is obtained by differentiating 𝐹𝑗 (𝑡;𝜣,𝒙), and we get

𝑓𝑗 (𝑡;𝜣,𝒙) = 𝛼𝜃𝛼𝑗 𝑒
𝜷⊤𝑗 𝒙𝑡𝛼−1exp

{

−

( 𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙
)

𝑡𝛼
}

. (8)

Following general notation for quantile function as in (3), the cause
specific quantile/ sub-quantile function is defined as

𝑄𝑗 (𝑞;𝒙) = 𝐹−1
𝑗 (𝑞;𝒙) = inf{𝑡 ∶ 𝐹𝑗 (𝑡;𝒙) ≥ 𝑞}, 𝑗 = 1, 2,… , 𝑝, 0 ≤ 𝑞 ≤ 1.

(9)

The estimate of cause specific quantile is obtained as 𝐹−1
𝑗 (𝑞;𝒙) = inf{𝑡 ∶

𝐹𝑗 (𝑡;𝒙) ≥ 𝑞}. Note that, if 𝐹𝑗 (𝑡;𝒙) is continuous and strictly increasing
function, then 𝐹−1

𝑗 (𝑞;𝒙) is the unique value of 𝑡 such that 𝐹𝑗 (𝑡;𝒙) = 𝑞.
Therefore, cause specific quantile function of 𝐹𝑗 (𝑡;𝜣,𝒙) from Eq. (7),
yields

𝐹−1
𝑗 (𝑞;𝜣,𝒙) =

⎡

⎢

⎢

⎣

−

( 𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙
)−1

log

{

1 − 𝑞
(

𝜃𝛼𝑗 𝑒
𝜷⊤𝑗 𝒙

)−1
( 𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙
)}

⎤

⎥

⎥

⎦

1∕𝛼

.

(10)

We used Weibull distribution for parametric modelling of cause specific
quantile functions under middle censoring scheme because it is a very
broad and flexible distribution for lifetime data analysis. A detailed
discussion on parametric modelling of middle censored lifetime data
with covariates can be found in [19]. We now proceed to obtain
estimates of the unknown parameters of the Weibull distribution, the
regression coefficients, and cause specific quantile functions, under
both classical and Bayesian approaches in the following Sections 3 and
4 respectively.

3. Maximum likelihood estimation

The maximum likelihood estimation (MLE) is widely used among
the statistical inference methods because of its desirable properties such
as consistency, asymptotic efficiency, and invariance. In the middle
censoring scenario, we assume that the lifetime 𝑇 is middle cen-
sored by random censoring interval [𝑈, 𝑉 ] which having a bivariate
3

cumulative distribution function 𝐺(⋅, ⋅). Moreover, we assumed that
(𝑈1,𝑊1), (𝑈2,𝑊2),… , (𝑈𝑛,𝑊𝑛) are i.i.d. pairs of bivariate random ob-
servations, where left end point 𝑈𝑖 and length of the censoring interval
𝑊𝑖 = (𝑉𝑖 − 𝑈𝑖) are independently follow exponential distributions
i.e. 𝑈𝑖 ∼ Exp(𝜔1) and 𝑊𝑖 ∼ Exp(𝜔2). For 𝑛 ∈ N individuals, let lifetime
𝑇𝑖’s, (𝑖 = 1, 2,… , 𝑛) and censoring interval [𝑈𝑖, 𝑉𝑖]’s are independent,
given the covariate 𝒙𝑖. The observed lifetime for the 𝑖th individual is
given by

𝑌𝑖 =
{

𝑇𝑖; if 𝛿𝑖 = 1
[

𝑈𝑖, 𝑉𝑖
]

; if 𝛿𝑖 = 0

where 𝛿𝑖 = 𝟏(𝑇𝑖 ∉ [𝑈𝑖, 𝑉𝑖]) is a censoring indicator. In this study it
is assumed that when 𝑇𝑖 ∈ [𝑈𝑖, 𝑉𝑖], then the causes of failure can
be observed on later inspection. We assume that (𝑦𝑖, 𝛿𝑖, 𝑗𝑖,𝒙𝑖) are i.i.d.
observations of (𝑌 , 𝛿, 𝐶,𝒙) corresponding to 𝑛 individuals under study.
For the observed data (𝑌 , 𝛿, 𝐶,𝒙), the likelihood function is then given
by

𝐿(𝜣) ∝
𝑛
∏

𝑖=1

𝑝
∏

𝑗=1
𝑓𝑗 (𝑡𝑖;𝜣,𝒙𝑖)𝛿𝑖𝛥𝑖(𝑗)

[

𝐹𝑗 (𝑣𝑖;𝜣,𝒙𝑖) − 𝐹𝑗 (𝑢𝑖;𝜣,𝒙𝑖)
](1−𝛿𝑖)𝛥𝑖(𝑗) ,

(11)

where 𝛥𝑖(𝑗) = 𝟏(𝐶𝑖 = 𝑗) is the indicator function for 𝑗th cause. It is also
assumed that 𝜔1 and 𝜔2 do not depend on 𝜣. Without loss of generality
we assume that first 𝑛1 =

∑𝑛
𝑖=1 𝛿𝑖 are the uncensored and remaining

𝑛2 = 𝑛−𝑛1 are censored observations respectively. Let 𝑛1𝑗 =
∑𝑛

𝑖=1 𝛿𝑖𝛥𝑖(𝑗)
and 𝑛2𝑗 =

∑𝑛
𝑖=1(1−𝛿𝑖)𝛥𝑖(𝑗) are the number of the observed events of type

𝑗 with respect to uncensored and censored individuals respectively with
∑𝑝

𝑗=1
∑𝑛

𝑖=1 𝛥𝑖(𝑗) = 𝑛 where 𝑛 = 𝑛1 + 𝑛2.
The likelihood based on Eqs. (7) and (8) can be written as

𝐿(𝜣) =
𝑛

∏

𝑖=1

𝑝
∏

𝑗=1

[

𝛼𝜃𝛼𝑗 𝑒
𝜷⊤𝑗 𝒙𝑖 𝑡𝛼−1𝑖 exp

{

−
(

𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖
)

𝑡𝛼𝑖
}

]𝛿𝑖𝛥𝑖(𝑗) [ 𝜃𝛼𝑗 𝑒
𝜷⊤𝑗 𝒙𝑖

∑𝑝
𝑗=1 𝜃

𝛼
𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖

×

{

exp
(

−
(

𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖
)

𝑢𝛼𝑖
)

− exp
(

−
(

𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖
)

𝑣𝛼𝑖
)

} ]

(1−𝛿𝑖)𝛥𝑖(𝑗).

(12)

The log-likelihood function 𝓁 = log𝐿(𝜣) is given by

𝓁 = 𝑛1 log 𝛼 +
𝑝
∑

𝑗=1
𝛼𝑛1𝑗 log 𝜃𝑗 +

𝑝
∑

𝑗=1

𝑛1𝑗
∑

𝑖=1
𝜷⊤
𝑗 𝒙𝑖 +

𝑛1
∑

𝑖=1
(𝛼 − 1) log 𝑡𝑖

−
𝑛1
∑

𝑖=1

𝑝
∑

𝑗=1
(𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖 )𝑡𝛼𝑖 +
𝑝
∑

𝑗=1
𝛼𝑛2𝑗 log 𝜃𝑗 +

𝑝
∑

𝑗=1

𝑛1+𝑛2𝑗
∑

𝑖=𝑛1+1
𝜷⊤
𝑗 𝒙𝑖

−
𝑛1+𝑛2
∑

𝑖=𝑛1+1
log

(

𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖
)

+
𝑛1+𝑛2
∑

𝑖=𝑛1+1
log

[

exp
(

−
(

𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖
)

𝑢𝛼𝑖
)

− exp
(

−
(

𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖
)

𝑣𝛼𝑖
)]

.

(13)

The MLEs of unknown parameters are obtained by maximizing the
log-likelihood (13). The system of equations with respect to each of
the parameters is given in Appendix. Since these equations are not in
an explicit form, analytical solutions are not possible. So, we utilize
iterative methods such as Newton–Raphson or other techniques to solve
the system of equations. We used the optim function in R software
for obtaining MLEs of the unknown parameters. By using the invari-
ance property of MLEs we obtain the MLEs of cause specific quantile
functions. Suppose that the �̂� is the MLE of 𝜣 then the estimator of
𝐹−1
𝑗 (𝑞;𝜣,𝒙) is given by 𝐹−1

𝑗 (𝑞; �̂�,𝒙).

4. Bayes estimation

Bayesian inference is distinctive in that it incorporates prior infor-
mation with the observed data. For obtaining the Bayes estimates of
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unknown parameters 𝛼, 𝜃𝑗 , 𝜷𝑗 and cause specific quantile 𝐹−1
𝑗 (𝑞;𝜣,𝒙),

first we need to define the suitable priors of unknown parameters and
appropriate loss functions. It is known that there is limited information
about the unknown parameters except that 𝛼 > 0, 𝜃𝑗 > 0 and −∞ < 𝜷𝑗 <
∞, 𝑗 = 1, 2,… , 𝑝. If all the parameters are unknown then it is difficult
to obtain the joint conjugate prior for the parameters. We therefore
assumed informative prior by choosing independent gamma priors for
𝛼 and 𝜃𝑗 and normal priors for 𝜷𝑗 as follows

𝜋1(𝛼) ∝ 𝛼𝑞1−1𝑒−𝑟1𝛼 , 𝑞1, 𝑟1, 𝛼 > 0,

𝜋2𝑗 (𝜃𝑗 ) ∝ 𝜃
𝑞2𝑗−1
𝑗 𝑒−𝑟2𝑗𝜃𝑗 , 𝑞2𝑗 , 𝑟2𝑗 , 𝜃𝑗 > 0,

𝜋3𝑗 (𝜷𝑗 ) ∝ 𝑒
− 1

2

(

𝜷𝑗−𝝁𝑗
𝝈𝑗

)2

, 𝝈𝑗 > 0,−∞ < (𝝁𝑗 , 𝜷𝑗 ) < ∞,

(14)

where 𝑞1, 𝑟1, 𝑞2𝑗 , 𝑟2𝑗 , 𝝁𝑗 and 𝝈𝑗 are the hyper parameters. The hyperpa-
ameters are assumed to be known and are chosen in such a way that
eflects the degree of belief about the unknown parameters. The joint
rior distribution of 𝛼, 𝜃𝑗 and 𝜷𝑗 from (14) up to the proportionality is
iven by

𝜋(𝜣) ∝
𝑝
∏

𝑗=1
𝜋1(𝛼)𝜋2𝑗 (𝜆𝑗 )𝜋3𝑗 (𝜷𝑗 ),

𝜋(𝜣) ∝
𝑝
∏

𝑗=1
𝛼𝑞1−1𝜃

𝑞2𝑗−1
𝑗 𝑒−

(

𝑟1𝛼+𝑟2𝑗𝜃𝑗
)

𝑒
− 1

2

(

𝜷𝑗−𝜇𝑗
𝜎𝑗

)2

.

(15)

The joint posterior density of 𝛼, 𝜃𝑗 and 𝜷𝑗 is obtained as follows

𝑝(𝜣 ∣ 𝑑𝑎𝑡𝑎) =
𝐿(𝜣 ∣ 𝑑𝑎𝑡𝑎)𝜋(𝜣)

∬ ⋯ ∫ 𝐿(𝜣 ∣ 𝑑𝑎𝑡𝑎)𝜋(𝜣)𝑑𝜣
, (16)

where 𝐿(𝜣 ∣ 𝑑𝑎𝑡𝑎) is the likelihood function based on observed data
as given in Eq. (12) and 𝜋(𝜣) is the joint prior density (15). The
enominator part of Eq. (16) involve multiple integrals and it is difficult
o obtain the posterior densities of random variables 𝛼, 𝜃𝑗 and 𝜷𝑗 in
xplicit form. Thus the analytical evaluation of posterior samples is
mpossible. Therefore, in this situation MCMC method can be used
o approximate the integrals [20]. Popularly used MCMC algorithms
re Gibbs sampling algorithm [21] and Metropolis–Hastings (M–H)
lgorithm [22]. Since, marginal posterior densities of random variables
, 𝜃𝑗 and 𝜷𝑗 are not obtained in closed form, and so we employ the M–H
lgorithm.

In this article we consider two different types of loss functions,
amely the commonly used squared error (symmetric) loss function and
he LINEX (asymmetric) loss function for the purpose of comprehensive
omparison of Bayes estimates. Squared error loss function (SELF) is
efined as 𝐿(𝜣, �̂�) = (𝜣 − �̂�)2 for a parameter 𝜣. Then the Bayes
stimate for parameter 𝜣 and 𝐹−1

𝑗 (𝑞;𝜣,𝒙) under SELF can be obtained
as the posterior mean and calculated as

�̂� = 1
𝑁 −𝑀

𝑁
∑

𝑙=𝑀+1
[𝜣]𝜣=𝜣𝑙

,

̂−1
𝑗 (𝑞;𝜣,𝒙) = 1

𝑁 −𝑀

𝑁
∑

𝑙=𝑀+1

[

𝐹−1
𝑗 (𝑞;𝜣,𝒙)

]

𝜣=𝜣𝑙
,

where 𝜣𝑙 , 𝑙 = 1, 2,… , 𝑁 are the MCMC posterior random samples
drawn from the marginal posterior distribution of random variables
𝛼, 𝜃𝑗 and 𝜷𝑗 , and 𝑀 is the number of iteration used in burn-in period.

Note that SELF is a symmetric loss function but it is not useful
for the situations when under/over estimation is more costly than the
over/under estimation and it is considered the equal weight for both
under and over estimation. For example, over estimation of survival
function and failure rate function is usually much more serious than
under estimation. To overcome this difficulty we also consider as an
alternative the LINEX loss function (LLF) which is an asymmetric loss
function given by 𝐿(𝜣, �̂�) = 𝑒𝜌(�̂�−𝜣) − 𝜌(�̂� −𝜣) − 1, 𝜌 ≠ 0. Under LLF
the Bayes estimates of parameter 𝜣 and 𝐹−1(𝑞;𝜣,𝒙) can be obtained
𝑗

4

as follows

�̂� = −1
𝜌
log

(

1
𝑁 −𝑀

𝑁
∑

𝑙=𝑀+1
𝑒−𝜌[𝜣]𝜣=𝜣𝑙

)

,

̂−1
𝑗 (𝑞;𝜣,𝒙) = −1

𝜌
log

(

1
𝑁 −𝑀

𝑁
∑

𝑙=𝑀+1
𝑒
−𝜌

[

𝐹−1
𝑗 (𝑞;𝜣,𝒙)

]

𝜣=𝜣𝑙

)

,

here 𝜌 is the hyper parameter of the LLF and magnitude of 𝜌 reflect
he degree of asymmetry. For 𝜌 > 0 the LLF is quite asymmetric about

with overestimation being more serious than underestimation. The
pposite is true with 𝜌 < 0. If 𝜌 is close to zero then estimates under
LF are approximately equal to estimates obtained under SELF.

. A Monte Carlo comparison of the estimates

We conducted a Monte Carlo simulation study to observe the finite
ample behaviour of the MLE and Bayes estimators of the unknown
arameters and cause specific quantile functions. We generate the ran-
om samples through inverse transformation for four different sample
izes i.e. 𝑛 = 25, 50, 100, and 200. For each sample sizes, we simulated
500 sets of data. In this scenario, we computed average estimates (AVE)
and mean square error (MSE) for 𝛼, 𝜃𝑗 , 𝜷𝑗 and 𝐹−1

𝑗 (𝑞;𝜣,𝒙). Besides that
we obtained the average length (AVL) along with coverage probability
(CP) of the asymptotic confidence interval (ACI) of the MLE and Bayes
credible interval (BCI) of the Bayes estimates to compare the precision
of the estimates. We also consider two different censoring percentage
viz., mild (approximately, 10%), and heavy (approximately, 30%) for
observing the impact of censoring. The censoring effect is explained as
follows: if lock-down is extended during the COVID-19 pandemic, the
percentage of censored observations will increase. As a result, COVID-
19 cases are on the rise, posing a threat to the health-care system. We
refer these censoring percentages as censoring scheme 1 (CS-1) and
censoring scheme 2 (CS-2) respectively. The results of simulation study
based on CS-1 and CS-2 are available in Tables 1 and 2 respectively.

In the simulation study, we consider two causes of failure for
simplicity i.e. 𝑗 = 1, 2 and one single covariate 𝑥. The covariate 𝑥 is
generated from 𝑁(0, 1). The survival time 𝑇 is generated by using the
steps given in [23]. Without loss of generality the true parameter values
arbitrary taken as 𝛼 = 1.5, 𝜃1 = 0.5, 𝛽1 = 0.1, 𝜃2 = 0.4 and 𝛽2 = 0.1.
For obtaining the endpoints of middle censoring the random variable
𝑈 and 𝑊 are generated from independent exponential distributions
with fixed means 𝜔−1

1 and 𝜔−1
2 respectively. For CS-1 and CS-2 we

choose two pairs of values for (𝜔1, 𝜔2) as (0.35, 2) and (1, 0.9) which
gives the average censoring proportion approximately 10% (mild) and
30% (heavy) respectively. Based on different sample sizes and CSs, the
MLE and Bayes estimates of 𝛼, 𝜃𝑗 , 𝜷𝑗 and 𝐹−1

𝑗 (𝑞;𝜣,𝒙) are calculated.
The estimates of 𝐹−1

𝑗 (𝑞;𝜣,𝒙) are obtained at 𝑞 = 0.15 and covariate
𝑥 = −0.3 for both the causes and denoted as 𝐹−1

1 and 𝐹−1
2 with true

values 𝐹−1
1 = 0.6345 and 𝐹−1

2 = 0.8308.
The Bayes estimates are obtained based on assumed priors. The hy-

erparameters of gamma priors under informative prior are calculated
sing the likelihood estimates of 𝛼, 𝜃1 and 𝜃2 based on 1000 iteration
f sample size 25. Now, we compute the mean and variance of 𝛼, 𝜃1
nd 𝜃2 and compare with the mean and variance of gamma priors.
ubsequently, we get the hyper parameters values as 𝑞1 = 33, 𝑟1 =

20, 𝑞21 = 30, 𝑟21 = 58, 𝑞22 = 20 and 𝑟22 = 48. For regression parameters 𝛽1
and 𝛽2 we assumed 𝑁(0, 1) as informative priors. The hyper parameter
of LLF is fixed at 𝜌 = ±1.5, and it is known as llf-1 and llf-2.

Next, as we discussed in Section 4 that marginal posterior densities
of unknown parameters are not in a closed form, so we utilized the
MCMC procedure for generating the random samples from marginal
posteriors. For this purpose we used the BUGS software via R2OpenBUGS
package in R software [24]. We generate, 𝑁 = 10 000 Markov chains
for each parameter and the first 𝑀 = 4000 samples were used in burn-
in period. Furthermore, for minimizing the effect of the autocorrelation
every second equally spaced outcome is considered i.e. thin=2. By the
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Table 1
AVE and MSE values under CS-1 when 𝛼 = 1.5, 𝜃1 = 0.5, 𝛽1 = 0.1, 𝜃2 = 0.4, 𝛽2 = 0.1, 𝐹 −1

1 = 0.6345 and 𝐹 −1
2 = 0.8308.

𝑛 Method 𝛼 𝜃1 𝛽1 𝜃2 𝛽2 𝐹 −1
1 𝐹 −1

2

25 MLE AVE 1.6307 0.5108 0.1225 0.4188 0.1013 0.7059 0.9202
MSE 0.9298 0.0978 1.2951 0.0937 1.4748 0.4114 1.0638

ACI AVL 1.0253 0.3506 1.1851 0.3420 1.3856 0.7198 1.0804
CP 0.9440 0.9260 0.9140 0.9280 0.9460 0.8520 0.8500

Bself AVE 1.5974 0.5043 0.1049 0.4081 0.0844 0.6919 0.9138
MSE 0.2932 0.0235 0.9010 0.0234 0.9447 0.1435 0.3554

Bllf-1 AVE 1.5726 0.5014 0.0478 0.4053 0.0090 0.6787 0.8802
MSE 0.2381 0.0228 0.9365 0.0226 1.0459 0.1222 0.2542

Bllf-2 AVE 1.6234 0.5073 0.1623 0.4109 0.1595 0.7061 0.9681
MSE 0.3647 0.0243 0.9426 0.0244 0.9751 0.1718 0.6732

BCI AVL 0.7165 0.2448 1.0647 0.2386 1.2184 0.5206 0.8390
CP 0.9800 0.9920 0.9220 0.9840 0.9580 0.9820 0.9880

50 MLE AVE 1.5521 0.5111 0.1021 0.4053 0.1005 0.6511 0.8754
MSE 0.3745 0.0414 0.4913 0.0375 0.6337 0.1387 0.3688

ACI AVL 0.6837 0.2479 0.7701 0.2405 0.9115 0.5137 0.7499
CP 0.9480 0.9560 0.9300 0.9460 0.9520 0.9280 0.9120

Bself AVE 1.5523 0.5070 0.0930 0.4021 0.0896 0.6580 0.8877
MSE 0.1922 0.0183 0.4244 0.0171 0.5244 0.0794 0.2319

Bllf-1 AVE 1.5371 0.5051 0.0663 0.4003 0.0531 0.6505 0.8683
MSE 0.1716 0.0178 0.4369 0.0169 0.5451 0.0738 0.1904

Bllf-2 AVE 1.5678 0.5090 0.1200 0.4040 0.1260 0.6658 0.9121
MSE 0.2183 0.0188 0.4279 0.0174 0.5324 0.0866 0.3174

BCI AVL 0.5585 0.1998 0.7339 0.1930 0.8547 0.3927 0.6321
CP 0.9660 0.9860 0.9340 0.9840 0.9580 0.9740 0.9760

100 MLE AVE 1.5448 0.5016 0.1005 0.4076 0.1056 0.6587 0.8522
MSE 0.1623 0.0193 0.2048 0.0186 0.2593 0.0763 0.1556

ACI AVL 0.4787 0.1711 0.5344 0.1665 0.6266 0.3646 0.4962
CP 0.9660 0.9660 0.9420 0.9460 0.9580 0.9360 0.9380

Bself AVE 1.5445 0.5006 0.0952 0.4044 0.0988 0.6610 0.8642
MSE 0.1169 0.0127 0.1935 0.0122 0.2400 0.0570 0.1284

Bllf-1 AVE 1.5357 0.4994 0.0820 0.4034 0.0807 0.6566 0.8546
MSE 0.1074 0.0127 0.1961 0.0120 0.2429 0.0539 0.1166

Bllf-2 AVE 1.5534 0.5017 0.1085 0.4055 0.1168 0.6654 0.8745
MSE 0.1281 0.0128 0.1947 0.0124 0.2440 0.0606 0.1442

BCI AVL 0.4254 0.1521 0.5184 0.1476 0.6027 0.2995 0.4440
CP 0.9640 0.9740 0.9380 0.9640 0.9620 0.9640 0.9620

200 MLE AVE 1.5122 0.5028 0.0986 0.4014 0.1045 0.6384 0.8415
MSE 0.0706 0.0096 0.0945 0.0091 0.1184 0.0323 0.0708

ACI AVL 0.3303 0.1222 0.3718 0.1183 0.4404 0.2668 0.3620
CP 0.9540 0.9320 0.9360 0.9500 0.9560 0.9680 0.9600

Bself AVE 1.5136 0.5020 0.0953 0.4001 0.1003 0.6410 0.8487
MSE 0.0588 0.0077 0.0930 0.0073 0.1152 0.0273 0.0644

Bllf-1 AVE 1.5090 0.5014 0.0888 0.3995 0.0912 0.6387 0.8436
MSE 0.0570 0.0077 0.0941 0.0073 0.1159 0.0268 0.0612

Bllf-2 AVE 1.5183 0.5027 0.1019 0.4007 0.1094 0.6433 0.8538
MSE 0.0610 0.0078 0.0927 0.0073 0.1163 0.0280 0.0684

BCI AVL 0.3080 0.1139 0.3647 0.1102 0.4298 0.2166 0.3210
CP 0.9600 0.9480 0.9380 0.9640 0.9500 0.9560 0.9560

Bself, Bllf-1, Bllf-2 denotes the Bayes estimates under SELF, llf-1 and llf-2 respectively.
visualization of the convergence diagnostics plots it is realized that
chains are converging nicely. Therefore, the last 6000 MCMC samples
are used to obtained the Bayes estimates of 𝛼, 𝜃𝑗 , 𝜷𝑗 and 𝐹−1

𝑗 (𝑞;𝜣,𝒙)
based on SELF and LLF.

From Table 1 it is clear that for fixed censoring proportion as the
sample size increases, MSEs decreases for MLE and Bayes estimates,
which verifies the consistency property of all the estimators. As ex-
pected, for small sample size the Bayes estimates under both the loss
functions are better than MLE in terms of MSE, AVL and CP. It is also
noticed that the CPs for ACIs of the cause specific quantile functions
for sample size 25 are little bit away from the nominal level (95%).
Similarly, for 𝑛 = 50,100 and 200 we can say that Bayes estimates of
baseline parameters and cause specific quantiles under both the loss
functions are quite better except some values in sample size 200. The
Bayes estimates for llf-1 are smaller as compared to llf-2. From Tables 1
and 2 it is observed that for fixed sample sizes the MSE and AVL
of all the estimates is increases as the censoring percentage increases
except for some values. Therefore, it indicates that as the censored
observations are increased this will leads to the less efficient estimates.
5

This implies that if the spread of corona virus is not under control in a
reasonable period of time, then it will have a significant impact on the
human health-care system. Overall it is observed that the CPs maintain
the nominal level (95%) of all the estimates for both the censoring
schemes.

6. An illustrative application

In this section, for illustrative purposes a real life application is
considered. We have taken real data from a Mayo Clinic study on
primary biliary cirrhosis (PBC) of the liver conducted between 1974
to 1984. This data set is available in survival package of R software.
During this ten-year period, 312 patients were randomly assigned to
receive D-penicillamine or placebo treatment from a total of 424 pa-
tients. The remaining 112 patients did not take part in the clinical trial
but agreed to have their basic measurements taken and to be followed
for survival. Six of those patients were lost to follow-up shortly after
diagnosis, so these patients were removed from the study. 161 patients
died at the end of the study, 25 patients received a liver transplant,
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Table 2
AVE and MSE values under CS-2 when 𝛼 = 1.5, 𝜃1 = 0.5, 𝛽1 = 0.1, 𝜃2 = 0.4, 𝛽2 = 0.1, 𝐹 −1

1 = 0.6345 and 𝐹 −1
2 = 0.8308.

𝑛 Method 𝛼 𝜃1 𝛽1 𝜃2 𝛽2 𝐹 −1
1 𝐹 −1

2

25 MLE AVE 1.6454 0.5128 0.1261 0.4214 0.1085 0.7084 0.9279
MSE 1.0921 0.1025 1.3280 0.0989 1.5060 0.4187 1.2594

ACI AVL 1.0844 0.3596 1.2237 0.3495 1.4154 0.7492 1.1557
CP 0.9420 0.9320 0.9240 0.9320 0.9380 0.8580 0.8640

Bself AVE 1.6021 0.5051 0.1071 0.4090 0.0887 0.6930 0.9153
MSE 0.3056 0.0229 0.9158 0.0236 0.9752 0.1424 0.3608

Bllf-1 AVE 1.5759 0.5021 0.0468 0.4061 0.0108 0.6794 0.8811
MSE 0.2452 0.0223 0.9546 0.0228 1.0670 0.1205 0.2569

Bllf-2 AVE 1.6294 0.5081 0.1680 0.4119 0.1664 0.7078 0.9710
MSE 0.3845 0.0238 0.9659 0.0247 1.0249 0.1720 0.6903

BCI AVL 0.7354 0.2480 1.0936 0.2410 1.2399 0.5282 0.8487
CP 0.9860 0.9960 0.9340 0.9860 0.9580 0.9900 0.9880

50 MLE AVE 1.5580 0.5118 0.1037 0.4061 0.1017 0.6528 0.8771
MSE 0.4252 0.0426 0.5142 0.0393 0.6595 0.1459 0.3879

ACI AVL 0.7162 0.2540 0.7926 0.2449 0.9316 0.5349 0.7800
CP 0.9440 0.9640 0.9320 0.9460 0.9460 0.9240 0.9080

Bself AVE 1.5565 0.5074 0.0943 0.4027 0.0910 0.6596 0.8890
MSE 0.2059 0.0182 0.4442 0.0174 0.5474 0.0815 0.2424

Bllf-1 AVE 1.5403 0.5054 0.0659 0.4009 0.0531 0.6518 0.8692
MSE 0.1817 0.0177 0.4559 0.0172 0.5677 0.0754 0.1991

Bllf-2 AVE 1.5731 0.5095 0.1227 0.4046 0.1288 0.6678 0.9147
MSE 0.2366 0.0187 0.4503 0.0178 0.5585 0.0892 0.3369

BCI AVL 0.5759 0.2030 0.7548 0.1954 0.8699 0.4010 0.6401
CP 0.9720 0.9840 0.9300 0.9800 0.9560 0.9720 0.9600

100 MLE AVE 1.5475 0.5022 0.1026 0.4080 0.1081 0.6596 0.8531
MSE 0.1742 0.0205 0.2130 0.0189 0.2726 0.0808 0.1564

ACI AVL 0.4993 0.1752 0.5480 0.1695 0.6384 0.3790 0.5155
CP 0.9680 0.9580 0.9500 0.9560 0.9560 0.9340 0.9340

Bself AVE 1.5473 0.5011 0.0968 0.4048 0.1018 0.6620 0.8655
MSE 0.1228 0.0133 0.2015 0.0122 0.2500 0.0594 0.1289

Bllf-1 AVE 1.5378 0.4999 0.0828 0.4037 0.0830 0.6574 0.8556
MSE 0.1120 0.0132 0.2038 0.0120 0.2518 0.0560 0.1164

Bllf-2 AVE 1.5569 0.5022 0.1109 0.4059 0.1205 0.6667 0.8762
MSE 0.1357 0.0134 0.2033 0.0124 0.2557 0.0633 0.1456

BCI AVL 0.4401 0.1546 0.5334 0.1497 0.6152 0.3066 0.4521
CP 0.9680 0.9720 0.9480 0.9660 0.9600 0.9640 0.9540

200 MLE AVE 1.5139 0.5025 0.0985 0.4013 0.1044 0.6396 0.8429
MSE 0.0748 0.0102 0.1028 0.0095 0.1257 0.0344 0.0720

ACI AVL 0.3437 0.1249 0.3811 0.1201 0.4484 0.2774 0.3762
CP 0.9560 0.9420 0.9360 0.9600 0.9600 0.9760 0.9660

Bself AVE 1.5159 0.5018 0.0954 0.4000 0.1006 0.6424 0.8502
MSE 0.0619 0.0081 0.1005 0.0075 0.1215 0.0290 0.0655

Bllf-1 AVE 1.5109 0.5012 0.0886 0.3994 0.0912 0.6400 0.8450
MSE 0.0597 0.0080 0.1017 0.0075 0.1222 0.0284 0.0621

Bllf-2 AVE 1.5209 0.5025 0.1023 0.4007 0.1100 0.6449 0.8555
MSE 0.0647 0.0081 0.1002 0.0075 0.1226 0.0298 0.0697

BCI AVL 0.3201 0.1160 0.3738 0.1118 0.4368 0.2224 0.3268
CP 0.9620 0.9520 0.9340 0.9640 0.9560 0.9620 0.9680

Bself, Bllf-1, Bllf-2 denotes the Bayes estimates under SELF, llf-1 and llf-2 respectively.
T
P

i
T
a
f
a

and 232 patients were lost to follow-up. As a result, for two competing
outcome variables, liver transplant and death, the competing risks
model becomes more reasonable. All the survival times are measured in
days. For more information on this PBC data, one may refer to Therneau
and Grambsch [25] and application of competing risk on PBC data is
available in [26].

In order to compute the survival time in years, it divided by 365,
which yielded a median survival time of 4.74 years. First, we check the
goodness of fit of the Weibull distribution using fitdistrplus package in R
oftware with assumption that the data is complete. The Kolmogorov–
mirnov distance between the empirical distribution function and the
itted Weibull distribution function is 0.0331 and the corresponding 𝑝-
alue is 0.7378. Therefore, Weibull model appears to be reasonable and
annot be rejected. We also consider the graphical method of goodness
f fit to check the appropriateness of the model as given in Fig. 1 and
t indicates that the model fits well to the data.

As we have discussed in Section 1 the middle censoring may arise
ue to COVID-19 pandemic. But this PBC data set does not have middle
ensored observations and currently we do not have any middle cen-
ored follow-up data. However, once the COVID-19 pandemic is over, it
6

able 3
oint estimates of unknown parameters.
Method 𝛼 𝜃1 𝛽1 𝜃2 𝛽2
MLE 1.5755 0.0654 0.0272 0.0966 0.2079
MLE S.E. 0.0692 0.0061 0.1829 0.0067 0.1351
Bayes self 1.5700 0.0650 0.0300 0.0964 0.2105
Bayes llf-1 1.5665 0.0650 0.0048 0.0964 0.1969
Bayes llf-2 1.5735 0.0650 0.0555 0.0965 0.2242
Bayes S.E. 0.0682 0.0061 0.1839 0.0067 0.1350

is possible that middle censored follow-up data will be available. There-
fore, we created an artificial data set using middle censoring, whose left
end point 𝑈𝑖 is equal to the observed time and the right end point 𝑉𝑖
is equal to the 𝑈𝑖 + 𝑊𝑖, where 𝑊𝑖 is the width of the interval, which
s generated from an exponential distribution with a mean value of 10.
hen, all the censored individuals in the original data set are considered
s the middle censored observations. The competing outcome variables
or middle censored observation are randomly assigned from transplant
nd death.
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Fig. 1. Graphical fitting of the Weibull distribution.
Fig. 2. Andersen plots for transplant and death.
For this new data set which consists observed exact lifetimes and
ensored intervals, we check the PH assumption of the model (4) by
onsidering treatment as a covariate. To examine the PH assumption
or transplant and death we utilize the graphical method known as
ndersen plot [27]. The covariate treatment is discrete and take two
alues 1 and 2 for D-penicillmain and placebo respectively. We also as-
ume that 106 patients who do not participate in the trial they received
he D-penicillmain treatment. Thus data are divided into two strata,
orresponding to D-penicillmain and placebo individuals. Suppose that
7

�̂�𝑟𝑗0(𝑡) be the estimate of baseline cumulative CSHF for 𝑗th cause in
rth stratum, 𝑗 = 1, 2 for transplant and death, and 𝑟 = 1, 2 for D-
penicillmain and placebo respectively. We plot �̂�1𝑗0(𝑡) versus �̂�2𝑗0(𝑡)
for transplant and death. If the proportionality assumptions holds then
these plots should be a straight line passing through origin which is
verifying by Fig. 2.

We then apply the proposed methods of estimation to obtain the
estimates of unknown parameters and cause specific quantile functions.
These are presented in Tables 3 and 4 under proposed methods of
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Fig. 3. CIF plots for transplant and death.
Table 4
Parametric cause specific quantile estimates for transplant and death.

Method Placebo D-penicillamine

𝐹 −1
1 (𝑞) 𝐹 −1

2 (𝑞) 𝐹 −1
1 (𝑞) 𝐹 −1

2 (𝑞)

𝑞 = 0.1 𝑞 = 0.2 𝑞 = 0.1 𝑞 = 0.2 𝑞 = 0.1 𝑞 = 0.2 𝑞 = 0.1 𝑞 = 0.2

MLE 3.935 7.069 2.529 4.173 3.929 7.306 2.209 3.630
Bayes self 3.976 7.225 2.531 4.186 3.955 7.447 2.204 3.627
Bayes llf-1 3.845 6.703 2.494 4.104 3.866 7.001 2.182 3.587
Bayes llf-2 4.132 12.60 2.570 4.275 4.055 9.162 2.225 3.668

estimation. The Bayes estimates are obtained under SELF and LLF loss
functions based on non-informative priors because we have no past
information about the unknown parameters. For non-informative priors
we assume that 𝑞1 = 𝑟1 = 𝑞21 = 𝑟21 = 𝑞22 = 𝑟22 = 0.0001 and where 𝛽1
and 𝛽2 are said to follow normal distribution with mean zero and large
variance. From Table 3 it is observe that the MLE and Bayes estimates of
the unknown parameters are very close. We also estimate the baseline
CIFs based on Eq. (7) for transplant and death under MLE and Bayes
estimates. Plots of the baseline CIFs are presented in Fig. 3 in which
solid line represents the estimates of the CIF due to death and dotted
line represents the estimates of the CIF due to transplant. From Fig. 3 it
is observed that the estimates of CIFs have smaller value for transplant
as compared to death.

Table 4 shows the parametric estimates of quantile functions for
time to transplant and death under both the treatment groups. Under
placebo treatment, the 10% quantile estimates for time to transplant are
approximately 4 years, and 20% quantile estimates are approximately
7 years based on MLE and Bayes estimates, except for Bayes estimate
under llf-2 for 20% quantile. However, under placebo treatment, 10%
and 20% quantile estimate for death are approximately 2.5 and 4 years
respectively. Similarly, under D-penicillamine treatment, 10% and 20%
quantile estimate for transplant are approximately 4 and 7 years (except
8

for Bayes estimate under llf-2 for 20% quantile) and for death are
approximately 2.2 and 3.6 years respectively. Quantile event times
gives the information about the stay of the patients in waiting queue,
this implies that the 10% and 20% patients will receive the transplant
soon after 4 and 7 years respectively and 10% and 20% patients died
soon after 2.2 and 3.6 years respectively. This shows that the waiting
time of the patients to receive the transplant is roughly two times
larger as compared to the death under both the treatment groups. It is
observed that the quantile estimates under both the treatment groups
have minor differences. This indicates that the effect of treatment is not
significantly different on transplant and death.

7. Concluding remarks

This article considers parametric cause specific quantile inference of
the CIF under middle censoring scheme. In this study we have discussed
the use of middle censoring scheme in the context of the current
COVID-19 pandemic. This research could provide a useful statistical
framework for medical practitioners to obtain precise survival analysis
for patients who were lost to follow-up due to this pandemic. We
believe this to be first such attempt to model the quantile event times
of the middle censored data under competing risks. The regression
model was developed based on Cox’s PH model by assuming a very
flexible Weibull distribution for the baseline hazard function. Also,
we provide the estimates of unknown parameters and cause specific
quantiles under both the classical and Bayesian set-up. The simulation
study shows that the Bayes estimates perform well based on informative
priors under squared error loss function in terms of MSE as compared
to MLE. However, all the estimates exhibit the consistency property,
as also the identifiability and appropriate convergence of the proposed
model. Overall, the proposed model performed well in simulation
studies. In a real data analysis on Primary Biliary Cirrhosis of the liver,
goodness of fit criteria verify that the Weibull model fits well to the
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R

data. Also the covariate treatment maintains the assumed model PH
assumption. Other semi-parametric regression models, such as additive
hazard regression model and proportional odds model, may also be
appropriate in this context and will be explored elsewhere.
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Appendix

Details of the system of normal equations used in Section 3 are
provided here after introducing some notations that help reduce the
length of expressions viz.

𝛹 =
𝑝
∑

𝑗=1
(𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖 ),

𝑆(𝛹 ; 𝑢, 𝑣) = exp
(

−

( 𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖

)

𝑢𝛼𝑖

)

− exp
(

−

( 𝑝
∑

𝑗=1
𝜃𝛼𝑗 𝑒

𝜷⊤𝑗 𝒙𝑖

)

𝑣𝛼𝑖

)

.

Partial derivatives of the log-likelihood of Eq. (13) with respect to each
of the parameters gives the following equations.

𝜕𝓁
𝜕𝛼

=
𝑛1
𝛼

+
𝑝
∑

𝑗=1
𝑛1𝑗 log 𝜃𝑗 +

𝑛1
∑

𝑖=1
log 𝑡𝑖 −

𝑛1
∑

𝑖=1

𝜕𝛹
𝜕𝛼

𝑡𝛼𝑖

−
𝑛1
∑

𝑖=1
𝛹𝑡𝛼𝑖 log 𝑡𝑖 +

𝑝
∑

𝑗=1
𝑛2𝑗 log 𝜃𝑗

−
𝑛1+𝑛2
∑

𝑖=𝑛1+1

𝜕𝛹∕𝜕𝛼
𝛹

+
𝑛1+𝑛2
∑

𝑖=𝑛1+1

𝜕𝑆(𝛹 ; 𝑢, 𝑣)∕𝜕𝛼
𝑆(𝛹 ; 𝑢, 𝑣)

= 0,

(17)

𝜕𝓁
𝜕𝜃𝑗

=
𝑛1𝑗𝛼
𝜃𝑗

−
𝑛1
∑

𝑖=1

𝜕𝛹
𝜕𝜃𝑗

𝑡𝛼𝑖 +
𝑛2𝑗𝛼
𝜃𝑗

−
𝑛1+𝑛2
∑

𝑖=𝑛1+1

𝜕𝛹∕𝜕𝜃𝑗
𝛹

+
𝑛1+𝑛2
∑

𝑖=𝑛1+1

𝜕𝑆(𝛹 ; 𝑢, 𝑣)∕𝜕𝜃𝑗
𝑆(𝛹 ; 𝑢, 𝑣)

= 0,

(18)

𝜕𝓁
𝜕𝜷𝑗

=
𝑛1𝑗
∑

𝑖=1
𝒙𝑖 −

𝑛1
∑

𝑖=1

𝜕𝛹
𝜕𝜷𝑗

𝑡𝛼𝑖 +
𝑛1+𝑛2𝑗
∑

𝑖=𝑛1+1
𝒙𝑖 −

𝑛1+𝑛2
∑

𝑖=𝑛1+1

𝜕𝛹∕𝜕𝜷𝑗

𝛹

+
𝑛1+𝑛2
∑

𝑖=𝑛1+1

𝜕𝑆(𝛹 ; 𝑢, 𝑣)∕𝜕𝜷𝑗

𝑆(𝛹 ; 𝑢, 𝑣)
= 0.

(19)
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